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Predictability and Prediction of Low-Frequency Rainfall
Over the Lower Reaches of the Yangtze River Valley
on the Time Scale of 20 to 30 days
Qiuming Yang1

1Jiangsu Meteorological Institute, Nanjing, China

Abstract This paper presents a predictability study of the 20–30-day low-frequency rainfall over the lower
reaches of the Yangtze River valley (LYRV). This study relies on an extended complex autoregressive (ECAR)
model method, which is based on the principal components of the global 850 hPa low-frequency meridional
wind. ECAR is a recently advanced climate forecast method, based on data-driven models. It not only reflects
the lagged variations information between the leading low-frequency components of the global circulation
and rainfall in a complex space, but also displays the ability to describe the synergy variations of
low-frequency components of a climate system in a low dimensional space. A 6-year forecast experiment is
conducted on the low-frequency rainfall over the LYRV for the extended-range daily forecasts during
2009–2014, based on the time-varying high-order ECAR. These experimental results demonstrate that the
useful skills of the real-time forecasts are achieved for an extended lead-time up to 28 days with a fifth-order
model, and are also shown to be 27-day lead for forecasts which are initiated from weak intraseasonal
oscillation (ISO). This high-order ECAR displays the ability to significantly improve the predictions of the ISO.
The analysis of the 20–30-day ISO predictability reveals a predictability limit of about 28–40 days. Therefore,
the forecast framework used in this study is determined to have the potential to assist in improving the
real-time forecasts for the 20–30-day oscillations related to the heavy rainfall over the LYRV in summer.

Plain Language Summary In recent years, the study of extended-range forecasting has become
not only a hot topic of global meteorological research but also a difficulty. It is necessary to study the
forecast methods and models, as well as the predictability, from multiple perspectives and angles. Using a
climate forecast method that is based on data-driven modeling is one of the main ways to extend the lead
time in the extended range. This paper presents that the forecast skill specific to 20 to 30 day oscillation
affected the heavy rainfall process in the lower reaches of Yangtze river valley for a suite of the extended
complex autoregressive model (ECAR) models, which had a good forecast skill at the lead time of
approximately 28 days. It has a forecast ability far superior to the traditional autoregressive model. These
ECAR models are based on the major lagged correlations with multiple different laggings hidden in a large
number of observation data, along with being completely driven by the dynamic data. It is an important way
to significantly improve the extreme weather forecasting accuracy for the 10 to 30 day extended-range
weather forecast.

1. Introduction

The 10 to 30 day extended-rangeweather forecast is found to be simultaneously influenced by the initial con-
ditions and atmospheric external force factors. Therefore, a combination of the initial meteorological condi-
tions, along with the oceanic, atmospheric, and climate influencing factors, is required. The observational
data had complex, comprehensive, and global characteristics. These large amounts of scientific data are used
to reflect and characterize the complex natural phenomena and relationships, with high data correlation and
multiple data attributes. This results in a very complicated forecasting process (Hoskins, 2013; Waliser et al.,
2003; Zhang et al., 2013). However, a single classical data analysis method cannot fully and effectively
complete such a large amount of data analyses. Hence, by crossing and integrating multiple data analysis
methods and techniques, the partial valid data could be extracted from the very large amounts of total data,
in order to more effectively obtain comprehensive low-frequency variation information than those that have
been obtained by previous sampling analysis techniques. It is found that these obtained partial valid data
show the warning and insight of an extreme weather message. This message could then be seen as a new
signal for extended-range weather changes.
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The understanding of the Earth’s climate systems is being continuously improved, especially in regard to the
extended-range forecast information sources, such as the intraseasonal oscillation (ISO) (Lee et al., 2013;
Madden & Julian, 1971; Waliser et al., 2003), the North Atlantic Oscillation (Cassou, 2008; Lin & Brunet,
2011), the interactions between the stratosphere and troposphere circulation (Baldwin et al., 2003), and so
on. These methods provide a development foundation for extended-range forecast. When the aforemen-
tioned particular atmospheric flow pattern signals appear continuously, the 10 to 30 day extended-range
weather processes often have very good predictability. Also, this will often result in extremely abnormal
weather events in the related areas, such as heavy rainfall events, as well as severe rises or drops in tempera-
tures. Various principal oscillation patterns can be directly extracted from the observational data with a multi-
variate, ultra-high dimension, super long sequence, highly coupled correlation, and high spatiotemporal
attributes, which have been found to be closely related to the extreme weather in a certain time scale and
a certain area (such as the Yangtze River Basin). Therefore, based on the previous results regarding the inter-
annual change laws of the different propagation characteristics and strengths of these oscillation patterns,
the dynamic data have been used to understand the complex low-frequency changes and data-driven build-
ing system, reducing the system’s complexity, and establishing a simplified forecasting model (Yang, 2015).
This forecasting model can significantly extend the lead time of the low-frequency component that corre-
sponds to the extreme weather processes over the specific areas.

The study of extended-range forecast has become a hot topic of global meteorological research in recent
years. However, these forecasting processes have been proven to be difficult (Brunet et al., 2010; Hoskins,
2013). It is necessary to study the forecasting methods andmodels, as well as the predictability, frommultiple
perspectives and angles. Generally speaking, the basic methods of extended-range weather forecasting have
mainly included two types: the dynamical methods (Fu et al., 2013; Jones et al., 2012; Miyakoda et al., 1983;
Vitart & Molten, 2010) and the statistical methods (Waliser, 2012; Waliser et al., 2003). The former methods
include atmospheric circulation models and ensemble numerical prediction models (Fu et al., 2013;
Hudson et al., 2011; Kim & Webster, 2010; Martin et al., 2010; Miura et al., 2007; Rashid et al., 2011;
Sabeerali et al., 2017), along with predictable component extracting models (Chou et al., 2010; Feng et al.,
2013; Zheng et al., 2013), and so on. Meanwhile, with the increased data, as well as the improvements in
the performances of the models, the lead times of the Madden-Julian Oscillation (MJO) (Madden & Julian,
1971) have been gradually extended to approximately 10–15 days. Over the past decades, dynamical models
have assisted greatly in the improvements of the forecasting techniques of the tropical MJO, in which the
hindcast experiment in the European Centre for Medium-Range Weather Forecasts model showed that the
useful skills are up to 25 to 30 day lead in the years with significant MJO (Neena et al., 2014). Also, the useful
skill is up to about 10–15 days for the global patterns of the dominant quasi-biweekly oscillation for the hind-
cast experiment in the National Centers for Environmental Prediction (NCEP) Climate Forecast System version
2 (Jia et al., 2013). However, the current dynamical models have difficulty in predicting the ISO signals in mid-
latitude regions for the time scale of 20–80 days. Due to the fact that among all of the types of uncertainties in
the weather and climate numerical forecasting models, the extended-range forecasting errors for the low-
frequency systems of the global atmosphere are still observed to be distinctly growing, especially over the
extratropics. The sources of these uncertainties, including the atmospheric chaotic nature and complex cou-
pling processes, continue to be examined. The latter refers to the statistical models based on the atmospheric
low-frequency signal evolution, which mainly includes the following: the principal oscillation pattern analysis
(POP) (Hasselmann, 1988; von Storch & Xu, 1990; Yang, 1998, 2011; Yang, Li, et al., 2012), singular value
decomposition (Hsu et al., 2015; Waliser et al., 1999; Zhu et al., 2015), singular spectrum analysis (SSA) (Mo,
2001; Vautard & Ghil, 1989), analog forecasting (Alexander et al., 2017; Xavier & Goswami, 2007), regression
analysis (Jiang et al., 2008; Kang & Kim, 2010; Wheeler & Hendon, 2004), linear inverse models (Cavanaugh
et al., 2014), multilevel regression models (Kondrashov et al., 2013), and physics-constrained models (Chen
et al., 2014). Since 1990, these experimental studies have rapidly increased in numbers. Some of the afore-
mentioned methods have been used for real-time forecasting. The general average lead time is now up to
20 days or higher for the MJO. More recently, based on the kernel analog forecasting, the forecast skill was
of up to about 50 days for the hindcast of the MJO and boreal summer intraseasonal oscillation (BSISO)
(Wang & Xie, 1997) in the tropics on a time scale of 30–60 days using the nonlinear Laplacian spectral analysis
indices (Alexander et al., 2017). In addition, there are the neural network models (Borah et al., 2013; Love &
Matthews, 2009), empirical mode decomposition (Love et al., 2008), and physical decomposition principle
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of regional-scale atmospheric transient anomaly (Qian, 2012), and the comprehensive prediction methods of
these various models have displayed certain forecasting skills.

Although the prediction skill has been slowly increasing in recent years, the majority of the current opera-
tional dynamical models still have poor skills in predicting the ISO over the subtropical andmidlatitude areas.
Given the incapability of dynamical models in reproducing the observed ISO, empirical statistical models
have been constructed to further improve for the practical ISO predictions (Waliser, 2012). It has been found
that at present, the statistical methods that have been established on the basis of the research achievements
of the ISO for the rainfall variations have displayed better forecasting abilities on extratropical ISO than those
achieved using dynamical model (Yang, 2015; Zhu & Li, 2017). Therefore, the statistical model remains an
effective way to study the ISO predictability over the extratropical regions.

As an important background of the high-frequency weather changes, the ISO with the cycles of 30–60 (MJO,
Madden & Julian, 1971; BSISO1, Wang & Xie, 1997; Lee et al., 2013), 20–30 (Yang, 2009), and 10–20 (Kikuchi &
Wang, 2009) and 10–30 days (BSISO2, Lee et al., 2013) has direct links between the weather and the climate.
Also, the nature of these ISO modulations for the occurrence, strength, and spatial patterns of the regional
climate events is observed to vary with background climate states. Therefore, the ISO has been considered
to fill the “forecasting gap” between the weather forecast and the seasonal forecast. The ISO can be used
as an important forecasting source for the extended-range forecasts. During the past 20 years, a great deal
of research has also been conducted in this field in China, and important progress has been made (Yang,
Song, et al., 2012). The results of these studies have shown that the floods in eastern China are largely corre-
lated to the ISOs, particularly the rainfall in the middle and lower regions of the Yangtze River. These are clo-
sely related to the multiple low-frequency oscillations and their propagations over extratropics of Eastern
Asia in the time scales of 20–30, 30–50, and 50–80 days. The previous studies have also shown that a single
oscillation influence relationship exists between the rainfall over the lower reaches of the Yangtze River valley
(LYRV: 30.5°–32.0°N, 118.0°–122.5°E; represented by the purple rectangle in Figure 1a) and the 20 to 30 day or
30 to 50 day or 50 to 80 day ISO strengths. These ISO changes have the more significant positive correlation
to the heavy rainfall in the LYRV (Yang, 2009), in particular the 20 to 30 day ISO, while the influence of the MJO
has been found to be relatively weak. These ISOs of the rainfall over the LYRV are not single-frequency sinu-
soidal oscillations. Instead, these are known to be broadband quasiperiodic oscillations (20–80 days) and
have considerable event-to-event variability. Also, there is a chance that the associated high-frequency vari-
abilities have modulated the variabilities in the observed data. Hence, the real predictability would be much
lower. Figures 1b–1d show the time series of intensity (standard deviation of daily filtered rainfall during the
period from 1 June to 31 August, unit: mm) of the 20 to 30 day, 30 to 50 day, and 50 to 80 day oscillations for
rainfall and the number of the heavy precipitation process (from the average of the daily precipitation with
greater than or equal to 25 mm) over the LYRV in June–August from 1979 to 2014, respectively. It is found
that correlations of intensity of these ISOs to the number of the heavy precipitation process are 0.564,
0.369, and 0.391, respectively, and these represent the statistical significance of the correlation coefficient
at the 99.9, 95, and 98% leveld, respectively. Therefore, among these oscillations, the intensity of the 20 to
30 day oscillation has the strongest positive correlation with the heavy rainfall processes over the LYRV
(Figure 1b). In the cases of significant positive phases of the 20 to 30 day low-frequency rainfall, or
positive-negative phase transformations, it is found that the probability of continuous heavy rainfall would
be significantly increased. Thereby, the evolution of the 20 to 30 day oscillation would potentially provide a
better indicative significance for the extended-range forecast of heavy rainfall over the LYRV. Consequently,
continued examinations and improvements of the extended-range forecast method of the 20 to 30 day rain-
fall ISO that described these ISOs to emphasize the diversity of their behavior, as well as the extension of the
lead time, will effectively further improve the real-time forecast accuracy of heavy rainfall in the LYRV during
the 10–30 days.

In regard to the extended-range forecast of the low-frequency rainfall, the majority of the statistical forecast
research in China and internationally is mainly based on a statistical analysis method in a real number domain,
such as linear regression analysis and similarity analysis (Kang & Kim, 2010; Seo et al., 2009; Zhu et al., 2015).
Less consideration has been given to the variation law of low-frequency variables in a complex domain, par-
ticularly the generating complex sequence by a data transformation. Therefore, some important low-
frequency change information contained in the observation data has been lost. In order to more effectively
analyze the spatiotemporal variation characteristics of a climate field, the empirical orthogonal function
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(EOF) analysis in a real domain has been promoted to complex domains. Also, complex empirical orthogonal
functions (Barnett, 1983), along with complex principal oscillation pattern analysis (CPOP) (Bürger, 1993) and
other methods, have been proposed. These methods can be used to obtain complex time series using the
Hilbert transform. They can also be used to construct a complex matrix for decomposition, which has the
ability to better identify the main spatial and temporal variations of a standing wave and traveling wave
oscillation systems. It can also overcome the weaknesses of a real EOF, which has been found to be unable
to reveal the changes in traveling waves. Meanwhile, these complex principal oscillation patterns can also
be used for low-frequency change forecasting research, which improves the analysis and forecasting skills
to a certain extent. However, the real-time extended-range forecasting of the ISO has been found to still be
dominated by a real-domain statistical analysis method for the original sequence (Kang & Kim, 2010; Zhu
et al., 2015). Therefore, some important low-frequency change information has continued to be ignored for
the generating complex sequence by a data transformation.

Consequently, in extended-range forecasting research, the low-frequency variables can be converted from
real spaces into complex sequences on Fourier space, which will then correspond to the characteristics of
the entire physical field characterized by the Fourier coefficients (amplitude). This conversion is required in
order to isolate more low-frequency information than in real spaces and set up a complex-domain statistical
model for forecasting. In the future, this will become one of the important ways in which to improve the pre-
dictabilities and extend the lead times. Through the constructing an extended complex matrix (ECM), an
extended complex autoregressive (ECAR) model was established (Yang, 2014), which changed over time.

Figure 1. (a) Lower reaches of the Yangtze River valley (LYRV): purple rectangle; Time series of intensities of the (b) 20 to
30 day and (c) 30 to 50 day and (d) 50 to 80 day oscillations for the rainfall (solid line, standard deviation of daily filtered
rainfall during the period ranging from 1 June to 31 August, unit: mm) and the number of the heavy precipitation processes
(bar) over the LYRV in June–August from 1979 to 2014, respectively; r represents their correlation coefficient.
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This low-frequency component forecast model (LFCF) based on ECAR is referred to as LFCF2.0 (Yang, 2015)
(http://www.lcjrerf30.org/english/). In 2013, this ECAR performed well in the hindcast experiments of the
low-frequency rainfall in the LYRV for the 1 January 1 to 31 December 2013 interval in a year with the stronger
20 to 30 day oscillation. The lead time of a 20 to 30 day low-frequency component of rainfall over the LYRV is
extended to 43 days. However, it is not clear whether or not the predictabilities for this ECAR model are asso-
ciated with the 20 to 30 day low-frequency component for the real-time forecast on data frommultiple years.

Therefore, this study focuses on the predictability of the low-frequency rainfall of the 20 to 30 day oscillations
using the ECAR model. The long sequence (1 January 1979 to 31 December 2008) low-frequency principal
component of the global 850 hPa circulation, as well as the 20 to 30 day low-frequency rainfall over the
LYRV (closely related to the heavy rainfall process) (Yang, 2009), is used in this study. The dynamic data are
adopted to drive the complex low-frequency change process and system construction. Then, a series of
the time-varying p-order ECARmodels is established. Moreover, the intraseasonal forecast skill is investigated
using observed 20 to 30 day low-frequency rainfall over the LYRV for the period of 2009–2014, and the inter-
annual variations of predictability, along with the possible reasons, are also discussed.

The structure of this paper is as follows. The ECAR model and the forecasting method of this study are
described in section 2. Section 3 introduces the data. The prediction skill of the 20 to 30 day low-frequency
rainfall over the LYRV and the predictability are given by forecasts of the time-varying high-order ECAR in
section 4, and a summary and discussion are presented in section 5.

2. Methodology
2.1. Extended Complex Autoregressive Model (ECAR)

The filtering data array with M observation samples and N grids in the meteorological field are as follows:
S = (S1,…, SN) = (si, j), i = 1, 2, …, M, and j = 1, 2, …, N. The principal component analysis (PCA) is carried
out on S, dimensioned M × N.

S ¼ TVT (1)

where T = (T1,,…, TN) and V = (V1,…, VN) are the time coefficient and matrix composed of the eigenvectors,
respectively. Then, the leading L principal spatial modes V = (V1,…, VL) and the time changesT ¼ T1;;…; TL

� �
¼ ti;j1

� �
(ti;j1 is the principal component of the low-frequency circulation) can be obtained. The extended data

array is constructed as follows:

F ¼ T1;…; TL; rlcj
� � ¼ f i;j2

� �
(2)

where j1 = 1, 2, …, L, rlcj is low-frequency rainfall series, and j2 = 1, 2, …, L + 1. A one-dimensional Fourier
transformation is carried out on the L + 1 time series of F ¼ F1;…; FLþ1ð Þ ¼ f i;j2

� �
as follows:

ef i;l ¼ XLþ1

j2¼1

f i;j2 exp �I
2π

Lþ 1
j2�1
� �

l � 1ð Þ
� �� �

(3)

where exp �I 2π
Lþ1 j2 � 1ð Þ l � 1ð Þ

� 	
¼ cos 2π

Lþ1 j2 � 1ð Þ l � 1ð Þ
� 	

� I sin 2π
Lþ1 j2 � 1ð Þ l � 1ð Þ

� 	
, I ¼ ffiffiffiffiffiffiffi�1

p
, i = 1, 2,

…, M; j2 = 1, 2, …, L + 1, and l = 1, 2, …, L + 1.

Therefore, the L + 1 complex time seriesef i;l = ai, l + bi, lI could be obtained to construct the extended complex
matrix (ECM) as follows:

eF ¼ ef i;l� 	
¼ eF1;…;eFLþ1

� 	
(4)

where l = 1, 2, …, L + 1, each complex component ef i;l represents different waves, and these Fourier coeffi-
cients denote the main characteristics of the entire extended physical field (phase and amplitude). For each
complex component ef i;l , a p-order complex autoregressive model is constructed.

ef iþ1;l ¼ B0 þ
Xp
k¼1

Bkef i�kþ1;l (5)

A least-square method in a complex number domain is used to calculate parameter estimation Bk, k = 0, 1,…,
p (in which p = 1, 2, 3,...).
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According to equation (5), the forecast value
befMþ1;l ¼ âMþ1;l þ b̂Mþ1;lI at the moment of M + 1 could be

obtained. Then, using a one-dimensional Fourier inverse transformation, the forecast value f̂ Mþ1;j2 of each
low-frequency component is achieved. Equation (5) could be used for a K-step recursion, in order to obtain

the forecast value f̂ MþK ;j2 on the Kth day, where j2 = 1, 2, …, L + 1, in which Re f̂ MþK ;Lþ1

� 	
¼ r̂lcj Mþ Kð Þ is

the forecast value of the low-frequency rainfall component. Equation (5) is referred to as an extended com-
plex autoregressive model (ECAR) (Yang, 2014), in which the parameter estimation is conducted by the least-
square method in a complex number domain as an extension of that in the real number domain. This ECAR
method differs from a wavelet-based prediction (Kang & Kim, 2010) for the sum of the predicted real parts of
each spectral band using a real linear autoregression method and is instead performed by using a data trans-
formation and complex linear autoregression method for a given spectral band. This method has the ability
to describe the time variation characteristics of each low-frequency variable on complex plane for the gen-
erating complex sequence. Therefore, more comprehensive variation information can be obtained than that
in real space, and the evolutions of the relationships between the observed low-frequency variables can be
relatively steadily revealed.

2.2. Forecasting Methodology

In this study, the global 850 hPa meridional wind field data during the period ranging from 1 January 1979
to 31 December 2008 (10,958 days) are used to determine the global low-frequency principal components
of the circulations, so as to establish the ECAR to conduct on the forecast experiments of the daily
low-frequency rainfall of the LYRV from 1 January 2009 to 31 December 2014 (2,191 days). Singular
spectrum analysis (SSA) (Vautard & Ghil, 1989; Mo, 2001) has a function of self-adaptive filtering signal
reconstruction with precise positioning of the various main signal changes and can minimize the bound-
ary effects of the traditional filtering methods with a T-EOF extension. Through these corrections inside
SSA, it is well suited for the real-time monitoring of the ISO. Hence, the SSA with a T-EOF extension is
carried out on the real-time principal components (PCs) of the circulations, as well as the observed daily
rainfall over the LYRV without detrending or temporal filtering in this study. Then, the respective
corresponding T-EOF component is reconstructed in order to obtain the component sequence of the 20
to 30 day oscillation signal of circulation and rainfall, and this is used as the basic data of the forecasting
test. Meanwhile, an ECAR model is established for the forecasting of the daily extended-range changes
of the 20 to 30 day rainfall component over the LYRV, for each day from 1 January 2009 to 31
December 2014.

As shown in the previous research, a significant influence relationship exists between the heavy rainfall in
the LYRV and the ISO intensity in the different time scales of 20–30 days, 30–50 days, and over 50 days
(Yang, 2009; Yang, Song, et al., 2012). For example, the ISO intensity of the 20 to 30 day rainfall is found
to have the most significant positive correlation with the interannual variabilities of the heavy rainfall
frequency in the LYRV from May to August. These interannual variations of the heavy rainfall frequency also
show significant quasi-biennial oscillations. Through the analysis of the principal oscillation pattern (POP)
(Hasselmann, 1988), it is found that from May to August in the time scale of 20–30 days, two 20 to
30 day principal oscillation patterns (POP1 and POP2) exist in the global 850 hPa circulation. One is a
southern circumglobal teleconnection wave train (SCGT) of the middle latitudes in the Southern
Hemisphere with an eastward propagation. The other is a tropical western Pacific pattern, with a southward
propagation. These two POP patterns are closely related to the 20 to 30 day low-frequency rainfall, as well
as the heavy rainfall processes in the LYRV. Thus, the principal components of the 850 hPa low-frequency
meridional wind fields with the time scale of 20–30 days, with larger variance worldwide contributions
(90°N–90°S, 0°–360°), are used in this study to establish the forecasting model.

Then, based on the PCA, the leading four EOFs of the global 850 hPa low-frequency meridional wind (V1,
…, V4) are identified (time scale: 20 to 30 days, data period: 1979 to 2008, sequence length: 10,958 days,
and the Butterworth filtering was used to obtain the global 850 hPa low-frequency meridional wind field),
with the explained variances of 3.83, 3.55, 2.94, and 2.88%, respectively. Figures 2a–2d illustrate the struc-
ture of these leading four EOFs (V1,…, V4) of the low-frequency meridional wind. Modes 1–4 are expressed
as a wave train structure with a zonal propagation (Yang, 2009), among which modes 1 and 2 and modes
3 and 4 correspond to the two different types of SCGT propagations, respectively. For example, modes 1
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and 2 correspond to a wave train that propagated in the subtropical and midlatitudes of the Southern
Hemisphere (Figures 2a and 2b), while modes 3 and 4 correspond to the other wave trains that
propagated in the middle and high latitudes of the Southern Hemisphere (Figures 2c and 2d). The
corresponding time coefficients also display significant interannual variabilities (figure omitted), which
reflect the diversity of the SCGT propagation modes in the extratropics of the Southern Hemisphere.
Furthermore, the stability of the eigenvectors (leading modes of the global 850 hPa low-frequency
meridional wind) was examined by using the absolute value of cosine on the angle of intersection
between the eigenvectors for the different sample sizes (M = 10,958 days (1979–2008, 30 years),
M1 = 9,131 days (1979–2003, 25 years)). It is found that these first four eigenvectors associated with
SCGT are more stable, with the larger absolute value of cosine on the angle of intersection between
the eigenvectors of 0.928, 0.890, 0.861, and 0.889 for the first four eigenvectors. It is worth noting that
such a wave train propagation similar to the SCGT (modes 1–4) will mainly affect the rainfall changes in
the midlatitudes of the Southern Hemisphere. In addition, these 20 to 30 day oscillations are also
performed in the changes of the eddy kinetic energy at a hemispheric scale. An example would be the
baroclinic annular mode, which is related to the two-way feedback between the baroclinity and the eddy
heat flux (Thompson & Barnes, 2014; Thompson & Woodworth, 2014). Moreover, from the viewpoint of the
correlation analysis in a sliding 300 day window among these time coefficients PC1 to PC4, which
correspond to the leading four modes of the global low-frequency circulations and the low-frequency rain-
fall over the LYRV, the sliding correlation coefficients are found to display significant seasonal and inter-
annual changes (figure omitted). Furthermore, definite seasonal and irregular changes are found to exist
in the time intervals with strong positive and negative correlations. Therefore, through an atmospheric
teleconnection, they are also able to in different ways indirectly affect the low-frequency component
changes in the 20 to 30 day rainfall of the LYRV, as well as the formation of the heavy rainfall
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Figure 2. Principal spatial modes of the global 850 hPa 20 to 30 day low-frequency meridional wind field from 1979 to 2008. (a–d) Modes 1–4; the values in the figure
have been multiplied by 1,000, and the dashed lines represent the negative values.
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processes, which are associated with the heating processes in the tropical Indian Ocean, and the interac-
tions of the circulations in both hemispheres (Yang, 2009). It is therefore concluded that the variations of
these leading modes are used as the important forecasting sources of the extended-range heavy rainfall
forecast over the LYRV.

In each of the independent forecasting experiments conducted for the 20 to 30 day rainfall of the LYRV,
the abovementioned leading four modes of the global low-frequency circulations are used. Also, the daily
observed global meridional wind occurrences from 2009 to 2014 are projected onto these leading four
EOFs (V1,…, V4) from the global low-frequency meridional wind during the period ranging from 1
January 1979 to 31 December 2008 (10,958 days), in order to obtain the observations of the first four
principal components PC1 to PC4 (including the daily high-frequency disturbances). Then, these four
observed PCs, along with the daily rainfall in the LYRV from 2009 to 2014, are projected onto the asso-
ciated T-EOFs, which corresponded to the 20 to 30 day oscillation after the SSA, in order to obtain the 20
to 30 day reconstructed component of PC1, …, PC4, along with the daily rainfall in the LYRV, T1, T2, T3, T4,
rlcj (T-EOF was calculated using the daily data from 1 January 1979 to 31 December 2008). This process is
completed in order to build the extended data array F = (F1,…, FL + 1)= (T1, T2, T3, T4, rlcj) (L = 4) for the
period from 1 January 2009 to 31 December 2014 (2,191 days). At this point, the ECAR model is set
up for the extended-range experiments on the daily low-frequency rainfall over the LYRV.

In these forecast experiments, based on the abovementioned extended data array F, the correlation skills
of a 1 to 30 day forecast with the ECAR model are calculated for the low-frequency component rlcj of rain-
fall over the LYRV for the period ranging from 2009 to 2014 (2,191 forecasts). A finite memory method is
used to keep the subsequence M0 constant. The forecasting of the ECAR with the initial date t0 is carried
out for the independent sample forecasting experiment in a sliding M0 day window with the order of
these ECAR p, the forecast lead time of the complex autoregressive model τ = 30 days, and the length
of the subsequence M0 = 90 days. Also, for the forecasting initial date t0, we use a T-EOF extension
method to minimize the end effects of the SSA reconstruction, in which an extended time series is given
in order to extend the record of the end point of t0 into record of t0 + 1, t0 + 2,…, t0 + l (l = 75 days) for
the real-time PC1, PC2, …, PC4, along with the daily rainfall over the LYRV. This study’s modeling scheme,
in which the time-varying model is set up, is found to be helpful for adapting to the variations of the cor-
relations between the principal low-frequency components of oscillation system (from January to
December). Furthermore, a series of these time-varying ECAR models also reflect the changing relation-
ships between each low-frequency component within the complex space during the different periods to

a certain extent. For the complex initial values ef t0;j2 (t = t0), an extended complex autoregressive model,

ef iþ1;l ¼ B0 þ
Xp
k¼1

Bkef i�kþ1;l , could be used for the K-step recursion, in order to obtain the forecast values

bef t0þK ;j2 (complex number) on the Kth day, j2 = 1, 2, …, L + 1. Then, through a one-dimensional Fourier

inverse transformation, the forecast value f̂ t0þK ;j2 of each low-frequency component is achieved, in which

Re f̂ t0þK ;Lþ1

� 	
¼ r̂lcj t0 þ Kð Þ is the forecast value of the low-frequency rainfall component. The initial values

ef t0;j2 (complex number) are derived from the one-dimensional Fourier transformation. In the time-varying

complex autoregressive model, the parameter Bk = Bk(t0), k = 0, 1, …, p, also varies with the initial time t0

in a sliding M0 day window. Thus, the initial values ef t0 ;j2 and complex parameter Bk = Bk(t0) play a key role
in predictions.

In this forecasting scheme, the initial dates t0 are from 31 December 2008 to 30 December 2014 (2,191 days)
for forecasting 30 days into the future (t0 + 1, t0 + 2,⋯, t0 + 30). This does not require any future data and is
therefore valid as a daily prediction. In addition, the forecasting skill of the ECAR model depends on the
order (p) with multiple time steps being considered. Increasing the order increased the number of indepen-
dent variables, which could potentially lead to over-fitting, whereas the higher orders may help provide the
essential time evolution information that could be potentially useful. This study also considers the range of
orders p from 1 to P, which represented temporal memories ranging from 1 day to P days prior to the
forecast day. Finally, a time-varying high-order ECAR model is constructed with optimal parameter p. The
schematic representation is shown in Figure 3.
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3. Data

Global 850 hPa meridional wind field data are sourced from the NCEP/National Center for Atmospheric
Research (NCAR) daily reanalysis global wind field data, with a grid of 2.5 × 2.5° (Kalnay et al., 1996).
Also, the daily rainfall data are selected from the average of 25 stations in the LYRV (30.5°–32.0°N,
118.0°–122.5°E, purple rectangle, Figure 1a). The dates used are from 1 January 1979 to 31 December
2014. The SSA is used for the original sequence of the daily rainfall over the LYRV, for the purpose of iden-
tifying the T-EOFs, and reconstructing the component sequence corresponding to the 20 to 30 day oscilla-
tion signals for the period from 1 January 1979 to 31 December 2008 (30 years). Based on an SSA window
of 90 days, it is found that T-EOF5 and T-EOF6 form a doubly degenerate pair of 90° out-of-phase
amplitude-modulated waves, with a spectral peak observed in the 1/(20 day) � 1/(30 day) frequency band
(Figure 4a). Also, the reconstructed component RC5 + RC6 (Figure 4b) is found to display a dominant peak
at 28 days in the noninteger power spectrum analysis (Schickedanz & Bowen, 1977), which explains about
26.0% of the variance in the 10 to 90 day band. This RC5 + RC6 is defined as the 20 to 30 day low-frequency
rainfall component over the LYRV. Then, the daily rainfall in the LYRV is projected onto the abovementioned
T-EOFs that correspond to the 20 to 30 day oscillations from the SSA for the interval ranging from 1 January
2009 to 31 December 2014. Thereby, a real-time low-frequency component sequence of the observed LYRV
rainfall (Figure 4c, blue line) is obtained during the period of 2009–2014 on the time scale of 20–30 days. It
is then described by RC5 + RC6 (projected onto the T-EOF5 and T-EOF6), in which a T-EOF extension
method is used to minimize the end effects of the SSA reconstruction. In addition, a final 3 day running
mean (i.e., from day �2 to day 0) is performed for the abovementioned real-time low-frequency rainfall
in the LYRV (RC5 + RC6), in which the high-frequency disturbed signals (less than 5 days) are removed. It
should be noted that this real-time RC5 + RC6 has a significantly negative correlation with the daily PC3
corresponding to the BSISO2 (BSISO2 is defined by the PC3 and PC4 of multivariate empirical orthogonal
function analysis of daily anomalies of outgoing longwave radiation and zonal wind at 850 hPa (U850) in
the region 10°S–40°N, 40°–160°E, which, together, mainly capture the northward/northwestward propagat-
ing variability with periods of 10–30 days during primarily the Asian summer monsoon, premonsoon, and
monsoon-onset season. The PC3 has a period of about 30 days) (Lee et al., 2013), in which the simultaneous
correlation coefficient is �0.092 (a significance of a 95% confidence level) based on the data from 1 January
1981 to 31 December 2012 (32 years). Then, an ECAR forecast model is constructed and the forecasts of
these low-frequency rainfalls in the time scales of 20–30 days are made for the future 30 days, with each
day beginning from 1 January 2009 to 31 December 2014 (6 years), in which initial dates are set from 31
December 2008 to 30 December 2014.
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Figure 3. Schematic representation of the time-varying ECAR forecasting model. V850: real-time global 850 hPa meridional
wind; T1, T2, T3, T4: real-time low-frequency principal components of the global 850 hPa meridional wind; rlcj: real-time
low-frequency rainfall; t0: initial time; M0: length of the subsequence; TE1,…, TE4: The respective T-EOFs of the principal
components of the 20 to 30 day global 850 hPameridional wind for the first four modes V1,…, V4 during the period ranging
from 1 January 1979 to 31 December 2008 on the time scale of 20 to 30 days; TEr: T-EOFs of the daily rainfall over the LYRV
during the period from 1 January 1979 to 31 December 2008 on the time scale of 20 to 30 days.
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4. Results
4.1. Forecast Experiment of the Low-frequency Rainfall in the
Lower Reaches of the Yangtze River Valley (LYRV)
4.1.1. Forecast Skills Averaged Over All Days
Since atmospheric circulation and rainfall consisted of multiple time
scales, it is expected that the high-order ECAR model would perform
better, which reflects the diversity of ISOs. We consider a range of
orders from 1 to 9, representing temporal memories ranging from
1 day to 9 days prior to the forecast day. A 20 to 30 day lead-time
is chosen as the evaluation period for determining the parameters
p, which represented the model’s extended-range forecasting skill.
The model with the minimum value of the Akaike information criter-
ion (AIC; Akaike, 1974) is selected as the potential optimal model.
This AIC may be minimized over choices of p to form a trade-off
between the fit of the model, which lowers the sum of squared resi-
duals, and the model’s complexity, which is measured by p. For the
period of 1999–2008, the forecasting experiments are performed by
the p-order ECAR model (using data within the training period).
Figure 5a shows the RMSE, which is measured by the difference
between the forecast and observation of the real-time low-frequency
rainfall over the LYRV during the period of 1999–2008 (the real-time
low-frequency components with the T-EOF extension). For these fore-
casting experiments, the variations of AIC are found to decrease with
the order p (Figure 5b) and reached a minimum at the fifth order
(p = 5), by which ECAR model obtained a 20 to 30 day rainfall ISO
predictability of up to approximately 27 days (Figure 5a, green line)
with the RMSE less than one standard deviation. It is found that
the higher orders beyond the fifth increase the AIC. Thus, it is deter-
mined that the optimal parameter p is the fifth-order based on the
AIC, as shown in Figure 5b. In this study, the fifth-order ECAR is used
to obtain the skills of a 6 year real-time forecasting experiment for
the independent sample, as shown in Figure 6. It can be seen in
the figure that the useful skills could be detected at a lead time of
approximately 28 days for the 20 to 30 day low-frequency rainfall
component over the LYRV during the period of 2009–2014, in which
the correlation coefficient is greater than 0.5, with the significance
level of 98% (solid line in Figure 6a), considering the influence of
sequence persistence. Meanwhile, the root-mean-square error
(RMSE) for forecast and observation is less than 1.0 at a 28 day lead
(solid line in Figure 6b), in which the daily low-frequency rainfalls of
forecast and observation are normalized by the standard deviation of
the data for the period of 2009–2014. It is indicated that this time-
varying high-order ECAR could effectively predict the changes of
the low-frequency rainfall components that are related to the 20 to
30 day oscillation propagations of circulation in the East Asian sub-
tropical region during the future 30 days. Furthermore, Figure 6c
shows the interannual variations of the forecasting skills of this
high-order EACR model at the lead times of 11 (green line), 14 (red
line), 17(blue line), and 20 (purple line) days for the period from
2009 to 2014, respectively. The skill of the high-order ECAR shows a
significantly positive correlation at all of the lead times for the future
20 days for all of the examined years, and the useful predictions are
defined by the pattern correlation between the predicted signal and
the true signal above 0.5.

Figure 4. (a) T-EOF 5 (solid line) and T-EOF 6 (dashed line) of the SSA for the rain-
fall over the LYRV; (b) the 20 to 30 day low-frequency rainfall (the reconstructed
component for modes 5 and 6: RC5 + RC6) during the period from 1 January
1979 to 31 December 2008; (c) time series of low-frequency rainfall (RC5 + RC6;
projected onto the T-EOF5 and T-EOF6) using the entire data record available
during the period from 1 January 2009 to 31 December 2014 (red line); real-time
low-frequency rainfall (blue line) with the T-EOF extension, with r as their
correlation coefficient; (d) time series of the low-frequency rainfall (red line)
using the entire data record and the real-time low-frequency rainfall (blue line)
without the T-EOF extension.
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Also, the model statistics and prediction skill are verified by utilizing the aforementioned six consecutive
years (2009 to 2014). It is found that despite the discrepancy in the true signal variances due to the strength
of the 20 to 30 day rainfall ISO activities in the different years, the autorrelations of up to 90 days (Figure 6d),
the distributions of probability density functions (PDFs) (Figure 6e), and the peak of the noninteger power
spectrums (Figure 6f) of the forecast at a lead time of 20 days for rainfall ISO all resembled those of the
real-time rainfall ISO. Therefore, the information of the 20 to 30 day low-frequency rainfall component over
the LYRV is well reflected by this high-order ECAR model for the six consecutive years.

In addition, the assessment for the first-order AR model, which has been directly established by the low-
frequency component of the LYRV rainfall, is found to only achieve a useful skill at a lead time of less than
5 days. The forecasting after 5 days shows significant instabilities, with the forecasting skill being less than
0.1 (the dashed line in Figure 6a) and an RMSE of greater than 1.0 (the dashed line in Figure 6b). Thereby,
on the time scale of 20–30 days, this AR model has reduced forecast ability for the 20 to 30 day rainfall ISO
of the LYRV, when compared with the high-order ECAR model. This study found that one important reason
for these results is that the first-order AR model has only reflected the change information of the
low-frequency rainfall over the LYRV in a real space (the poor forecasting skill), which is due to the failure
of capturing the oscillation structure.
4.1.2. Skill Dependence on 20 to 30 day ISO Intensity
Figure 7 shows the variations in the forecasting skill of the 20 to 30 day ISO with the different intensities
using the high-order EACR model. A rainfall ISO is defined as a strong case when its intensity is larger than
1.0, and a weak case when equal to or less than 1.0, during the period ranging from 1979 to 2008, in which
the ISO intensity is considered to be a 31 day running (from day �15 to day 15) standard deviation of the
daily filtered rainfall. It is evident that the initially strong cases showed a systematically higher forecasting
skill than the initially weak cases beginning from the 17th day of the forecast (Figure 7a). Meanwhile, the
RMSE increase is observed to be relatively slower for the initially strong cases (Figure 7b), in which the daily
low-frequency rainfalls of forecast and observation are normalized by the standard deviation of the data for
the period of 2009–2014. The initially strong cases are determined to have a skill of 29 days and the weak
cases, 27 days. It is speculated that the relatively lower forecasting skill for the initially weak cases could be
partly attributed to the lack of signal in the initial conditions. The above results imply that the high-order
ECAR model has a high forecasting skill when starting from an existing rainfall ISO. It should be noted that,
for the initially weak cases, the forecasting skills of the high-order ECAR are still determined to be up to
27 days, which indicate the strength of this ECAR model with better forecasting stability at the longer lead
times (25 to 30 days). This indicates that this high-order ECAR model with long-range dependence (multiple
steps) has better stable based on diversity of irregular variation of ISO in a complex domain, which is not
sensitive to the intensity of ISO.

Figure 5. (a) The RMSE of the real-time low-frequency rainfall component rlcj in the LYRV for a lead time 1–35 days during
the period from 1999 to 2008 for the p-order ECAR, which the black, blue, green, magenta, and cyan lines correspond to
p = 1, 3, 5, 7, and 9, respectively. The horizontal solid line in the figure represents one standard deviation. Units are mm;
(b) variations of AIC for the p-order ECAR model during the period of 1999–2008.
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Figure 6. (a) The correlation skill of 1 to 30 day forecasting of the low-frequency rainfall component rlcj in the LYRV during
2009 to 2014 on the time scale of 20 to 30 days. Solid line: the fifth-order ECARmodel; dashed line: ARmodel. The horizontal
solid line shows the threshold of the correlation coefficient r = 0.5; (b) root-mean-square error (RMSE, unit: standard
deviation). The solid line represents the fifth-order ECAR model, and the dashed line represents the AR model, in which the
daily low-frequency rainfalls of forecast and observation are normalized by the standard deviation of the data for the period
of 2009–2014. The horizontal solid line in the figure represents the threshold of RMSE = 1.00; (c) interannual variations
of the correlation skills for the fifth-order ECAR model. The lead times are 11 days (green), 14 days (red), 17 days (blue), and
20 days (purple), respectively. The horizontal dashed line indicates the threshold of the correlation coefficient r = 0.5. The
useful predictions are defined by the pattern correlation between the predicted signal and the true signal above 0.5;
comparison of the statistics of the real-time low-frequency rainfalls and the model signals, for the (d) autocorrelation
function, (e) PDFs, and (f) noninteger power spectrum, in which the blue (red) line represents the observations (forecasts at
a lead time of 20 days) of the low-frequency rainfall over the LYRV for the 20 to 30 day oscillation.
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Furthermore, Figures 8a and 8b present the skill scores based on this
fifth-order ECAR from the period ranging from 2009 to 2014. The useful
predictions of these 6 years all exceeded a 20 day lead time, and in par-
ticular, for the years 2009 to 2010, there are skillful predictions out to
about 30 days. In these predictions, the ECAR model obtains a 20 to
30 day rainfall ISO predictability of up to approximately 36 days for
the year 2009, with the correlation skill being greater than 0.5
(Figure 8a) and RMSE of less than 1.0 (Figure 8b), in which the daily
low-frequency rainfalls of forecast and observation are normalized by
the standard deviation of the data for each year. Figures 9a–9f show
the daily change curves of the real-time forecasting (dashed line)
for the daily 20 to 30 day low-frequency rainfall component at a
20 day lead during these 6 years (2009 to 2014). The forecasting skills
are determined to be 0.73, 0.62, 0.52, 0.54, 0.63, and 0.64, respectively
(365 forecasts for 2009, 2010, 2011, 2013, and 2014, or 366 forecasts
for 2012, and the initial date of the forecasting is the previous 12
December, ..., current 11 December). These represent a significance at
a 98% level in 2009, 2010, 2013, and 2014 and a 95% level in 2011
and 2012. It can be seen that the observed low-frequency component
(solid line) in 2009 (Figure 9a), 2013 (Figure 9e), and 2014 (Figure 9f)
shows heavier rainfall, in which the 20 to 30 day oscillation is not actu-
ally a regular “oscillation”, but rather an episodic mode of intraseasonal
variability, and also the time between the active phases varied from
event to event. Among these 6 years (2009 to 2014), the year 2012
was recorded as a drought year. A significant error was found in pre-
dicting the subdued 20 to 30 day rainfall ISO activity during June and
July of 2012 (Figure 9d), which explains its lower overall prediction skill
during this particular year when compared to the majority of the other
years. On the other hand, despite being a drought year, the 20 to
30 day rainfall ISO activity during 2010 was persistently strong from
January to June (Figure 9b), which still indicated a systematically higher
forecasting skill (Figure 8a, blue line), and a skill level of 30 days. In addi-
tion, the major error in predicting the 20 to 30 day rainfall ISO for the
year 2011 was in fact due to the model’s failure in capturing the oscilla-
tion intensity during the months of June and September (Figure 9c), in
which there were two abrupt changes of rainfall ISO, with weak cases in
spring, strong cases throughout the boreal summer, and then weak
cases again in fall. Furthermore, as seen from the associated PDF in
Figure 9, it is also found that the PDFs of the low-frequency rainfall over
the LYRV from the data and those from the high-order ECAR mode
match well for these 6 years, especially in 2011 and 2012. It is indicated
that the fifth-order ECAR model has a higher skill in predicting the
extreme events, in which the information of the 20 to 30 day rainfall
ISO over the LYRV are well reflected.

The above analysis suggests that the intensities of the rainfall ISO
activity play important roles in determining the prediction skills in dif-
ferent years. For example, the year 2009 had overall strong and regular
ISO activity during the whole year, which resulted in a long predictabil-
ity (Figure 8a, black line), while the signal-to-noise ratios in the years

2011(Figure 8a, red line) and 2012 (Figure 8a, green line) were smaller than the other years, and thus, the pre-
dictability is greatly affected. In addition, Figure 10 shows the prediction for 1991, which displayed the stron-
gest 20 to 30 day rainfall ISO (Figures 1b and 4b). It can be seen that for the 20 to 30 day rainfall component,
with time lead increasing from 10 to 58 days, correlation skill drops from 0.98 to 0.5 (Figure 10a), while the

Figure 7. (a) The prediction skills as a function of the ISO strength at the start of
the forecast: initially strong cases (solid line), initially weak cases (dashed line),
and all of ISO cases (dotted line), utilizing the fifth-order ECAR for the 20 to
30 day oscillation of rainfall over the LYRV during the period of 2009–2014. The
horizontal solid line shows the threshold of correlation coefficient r = 0.5; (b) the
RMSE for the initially strong cases (solid line); initially weak cases (dashed line);
all of the ISO cases (dotted line), unit: standard deviation. The horizontal solid
line in the figure represents the threshold of RMSE = 1.00, in which the daily low-
frequency rainfalls of forecast and observation are normalized by the standard
deviation of the data for the period of 2009–2014.
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RMSE increases from 0.23 to 1.00 (Figure 10b), in which the daily low-
frequency rainfalls of forecast and observation are normalized by the
standard deviation of the data in 1991. Therefore, the useful predictive
skill can be extended to 58 days. Moreover, the forecast skill at a 20 day
lead is 0.93 (Figure 10c) (365 forecasts, with the initial date of forecast
set from the previous 12 December 1990, …, current 11 December
1991). As can be clearly seen in Figure 10c, the year 1991 had an overall
strong and regular 20 to 30 day ISO activity associated with the heavy
rainfall over the LYRV during the boreal summer, which resulted in a
long predictability. On the other hand, the model statistics are
highly consistent with those of the full 20 to 30 day ISO time series,
including the autocorrelations of up to 90 days (Figure 10d), the PDFs
(Figure 10e), and the power spectrums (Figure 10f). These results sug-
gest that, even though 1991 is within the training period, this forecast-
ing shows that the fifth-order ECAR model could effectively predict
extreme events.

In previous studies, it has been confirmed that air-sea couplings play
very important roles in ISO generation andmaintenance and that exter-
nal heating forces caused by the sea surface temperature anomaly
(SSTA) are closely related to the changes in the atmospheric ISO inten-
sity for a certain time scale (Wang, 2008). Figure 11 describes the spatial
distribution of the teleconnection between the 20 to 30 day ISO inten-
sity for the precipitation over the LYRV in summer (Figure 1b, blue line)
and the data of the global SSTA in the preceding spring for the period
of 1979–2014 (based on the global sea surface temperature data
(HadSST3) acquired from the British Hadley Climate Prediction and
Research Center; Kennedy et al., 2011). It is clearly indicated that the tel-
econnections between the intensity of the 20 to 30 day rainfall ISO and
SSTA in the middle latitudes of the North Pacific in spring are quite sig-
nificant. Meanwhile, there are significant correlations over the tropical
western Indian Ocean and southern Indian Ocean, as well as themiddle
latitudes of the South Atlantic. These areas are key regions of the inter-
actions between the SSTA and the 20 to 30 day rain ISO and heavy rain-
fall in the LYRV. However, there are insignificant correlations over the
tropical center and eastern Pacific Ocean, in which the 20 to 30 day rain
ISO over the LYRV is not related to the ENSO. Accordingly, the predict-
ability of the 20 to 30 day ISO of the rainfall over the LYRV is high during
the years when the springtime SSTA in the northwestern Pacific Ocean
is large and positive, which is also favorable for the initially strong 20 to
30 day rainfall ISO to obtain higher prediction skills.
4.1.3. Importance of the Selected Extended Complex Matrix (ECM)
to Skills
The abovementioned large amounts of the forecast experiments indi-
cate that, based on the relationship between the 20 to 30 day ISO in
East Asia and the global dominant ISO patterns, and aiming at the lead-
ing lagged relationship of a certain phase in the complex space, this

study’s high-order ECAR forecasting model could be established. It is found to effectively predict the changes
in the low-frequency rainfall components of the LYRV during the 10 to 30 day extended-range, which is sig-
nificantly extended to a lead time of about 28 days. It not only effectively reflects the relationship between
low-frequency rainfall and the main circulation but also provides an important basis for the forecasting of
the heavy rainfall processes of the LYRV for the following 10 to 30 days.

Therefore, based on the extended low-frequency complex sequence, an ECM using a Fourier transformation
is established, and an ECAR model is constructed in a complex space (Yang, 2014). This is an entirely

Figure 8. (a) The skill scores with pattern correlations for predictions utilizing the
fifth-order ECAR in different years. The horizontal solid line shows the thresholdof
correlation coefficient r = 0.5. Useful predictions are defined by the pattern
correlation between the predicted signal and the true signal above 0.5; (b) the
RMSE; unit: standard deviation. The horizontal solid line shows the threshold of
the RMSE = 1.0. The useful predictions are defined by the normalized root-mean-
square error below 1.0, in which the daily low-frequency rainfalls of forecast and
observation are normalized by the standard deviation of the data for each year.
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data-driven forecasting model, which requires no preprogrammed or predetermined rules. This method also
provides a new description for determining the dynamical processes of the interactions between the internal
components in climate systems. It is also conducive to further explaining the structure and properties of the
climate system. Consequently, it is determined to provide a longer autocorrelation time in a complex space
and a higher forecast skill. This method thereby improves the performances of the forecasting of the various
dominant climate change modes and significantly prolongs the predictable lead times.

It is found noteworthy that the ECAR framework is flexible and could be easily adapted for extended-range
forecasting over other extratropical regions where the forecasting skills of the current dynamical models
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Figure 9. Forecasts (dashed line) and observations (solid line) of the fifth-order ECAR model at a lead time of 20 days from
January to December: (a) 2009, (b) 2010, (c) 2011, (d) 2012, (e) 2013, and (f) 2014 for the 20 to 30 day low-frequency rainfall
over the LYRV. The histogram represents the daily rainfall, unit: mm; r represents the correlation coefficient between the
forecasts and the observations; the initial date of forecast is set as the previous December 12,…, current December 11. For
the PDFs, the blue (red) line represents the observations (forecasts) of the low-frequency rainfall.
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have been found to be poor in predicting future precipitation events (for example, regions in Europe and
South America and southern Africa).This forecast method helps avoid dynamical model error and is able to
operate in real time. Also, the ECAR displays the ability to forecast different predictands (such as cold surges
and heat waves), provided that the ECM could be appropriately selected. Furthermore, this method could be
readily adopted to predict other timescale variabilities, such as interannual or interdecadal climate variations.

4.2. Importance of Initial Conditions and Boundary Effects of Filtering Method

In this study, based on the higher leading (lagged) correlations between the principal components of the East
Asian and global circulations in a complex spaces (the role of the low-frequency component in the Southern
Hemisphere is more prominent), improvements are made to the extended-range forecasting of the low-
frequency rainfall components over the LYRV. In regard to the real-time ISO forecasting, the 10 to 15 day
information of prior and posterior to the sequence is lost during the process of the ISO characteristic
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Figure 9. (continued)
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Figure 10. (a) Correlation skill of the 1 to 70 day forecasts of the low-frequency rainfall component rlcj in the LYRV in 1991,
on the time scale of 20 to 30 days, utilizing the fifth-order ECAR. The horizontal solid line indicates the threshold of the
correlation coefficient r = 0.5; (b) root-mean-square error (RMSE, unit: standard deviation). The horizontal solid line in the
figure represents the threshold of the RMSE = 1.0, in which the daily low-frequency rainfalls of forecast and observation are
normalized by the standard deviation of the data in 1991; (c) forecasting (dashed line) of the fifth-order ECAR model at
a lead time of 20 days and observations (solid line) from January to December. The histogram represents the daily rainfall,
unit: mm; r is the correlation coefficient between the forecast and the observation. A comparison of the statistics of the
real-time low-frequency rainfall and the model signals for (d) autocorrelation function and (e) PDFs and (f) noninteger
power spectrum, in which the blue (red) line represents the observations (forecasts) of the low-frequency rainfall over the
LYRV for the 20 to 30 day oscillation.
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extractions using a traditional filtering method, which cause a significant influence on the forecasting
precision of the lead time in the time series associated with the right-end effects of the filtered sequence.
This uncertainty in initial conditions has become a well-known obstacle in the extended-range forecast.

However, in the forecast scheme proposed in this study, the SSA is used for low pass filtering on the original
sequence, not only to filter the high-frequency noises but also to filter the periodic weak signals. The results
indicate the accurate position of the main signal change. A T-EOF extension is adopted to minimize the end
effects for applications of the real-time predictions for the right end of the filtered sequence, due to the end
effects that bias the SSA reconstruction and estimated value of the low-frequency mode phase at the forecast
starting time. In this T-EOF extension, for the forecasting starting time t0 and a given l (l = 75 days), this study
uses a T-EOF based on the prediction method (Lee, 2002) in order to forecast the value of t0 + 1, t0 + 2, …,
t0 + l, and also to extend the record of the end point of t0 into the record of t0 + 1, t0 + 2, …, t0 + l, on the
daily rainfall over the LYRV. Then, this extended series, with the length of the series t0 + l, is projected onto
the T-EOF5 and T-EOF6 (Figure 4a; the T-EOF is calculated by the daily data during the period ranging from
1 January 1979 to 31 December 2008), and the extended RC5 + RC6 is obtained. The record of the t0 for this
extended RC5 + RC6 is a record of the real-time low-frequency rainfall (end point of the filtered sequence at
the initial time t0). Furthermore, for the forecasting start times t0 during the period ranging from 1 January
2009 to 31 December 2014 (2,191 days), a real-time low-frequency component sequence of the observed
rainfall over the LYRV (Figure 4c, blue line) could be obtained on a time scale of 20–30 days. It is found that
the correlation coefficient of this real-time low-frequency rainfall with the T-EOF extension to that of the
observations when the entire available data record is used for the period from ranging from 1 January
2009 to 31 December 2014 (Figure 4c, red line) is 0.758, which indicates a 99.9% significance level.
However, the correlation of the real-time low-frequency rainfall without the T-EOF extension (Figure 4d, blue
line) to that of the observations using the entire data record (Figure 4d, red line) is determined to be 0.610,
which is significantly lower. Therefore, the information of the full 20 to 30 day rainfall ISO are confirmed to be
better reflected by the real-time low-frequency rainfall (Figure 4c, blue line) with a T-EOF extension. It should
be noted that no preprocessing, such as band-pass filtering, or seasonal partitioning, is performed. It is also
important to note that the advantages of the SSA filter are that these modes are data adaptive, and therefore,
they are not restrictive (like the Fourier filter), and unlike moving average filters, there are no losses of the end
points. Also, more precise initial values (right end of the filtered sequence) are obtained, which minimizes the
boundary effects of the traditional filtering method through the use of a T-EOF extension. Therefore, through
above corrections inside SSA, it is found to be very suitable for real-time extended-range forecasting. This is
also themain reason for the significant prolonging of the lead time of the ECARmodel, which is established in
this study.

Furthermore, the SSA also has the ability of identifying oscillation signals with irregular temporal variations,
which are not single-frequency sinusoidal oscillations, and therefore had a certain forecasting ability for the
nonlinear changes in the low-frequency components of the rainfall. Consequently, this ECAR model could
potentially be used to predict the irregular enhancements of a 20 to 30 day low-frequency rainfall compo-
nent, as well as the symbol changes (phase transformations) in the extended range. Therefore, this model
could provide larger amounts of information for the forecasting of heavy rainfall events in summer over
the LYRV for a future 30 days.

Figure 11. Teleconnections between the intensity of the low-frequency rainfall over the LYRV in summer and global sea
surface temperature anomalies (SSTA) in the preceding spring for the period of 1979–2014. The values in the figure have
been multiplied by 100, in which the confidence levels greater than 95% are shaded.
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4.3. Predictability

The forecast error is the difference between the forecasted value and the observed value and therefore
includes the error due to the uncertainty in the initial condition as well as the error due to the model imper-
fection. This forecast error gives the lower bound of predictability of a model (Lorenz, 1982). The daily error
growth of the low frequency rainfall over the LYRV is computed as root-mean-square (RMS) of the difference
between forecast and observation, and the limit of the forecast skill is estimated. The standard deviation of
the data for each year is computed, in which this standard deviation changes from year to year. We use this
standard deviation as the threshold for determining the predictability. When the RMS error at a certain lead
time is beyond this threshold, the predictability is reached.

The growth of errors is studied by computing the RMS of the difference in the daily anomalies of the low fre-
quency rainfall between forecast and observation. The mean in the RMS error is calculated over the years
2009–2014 (Figure 12a). It can be seen that for the low-frequency rainfall over the LYRV, with time lead
increasing from 1 to 31 days, mean RMS error (dashed line) increases from 0.5 to 1.3, in which the skillful pre-
diction is about 31 days (using one standard deviation as the threshold during 2009–2014). Further, the 6 year
independent forecast for each year, based on the standard deviation of the data for each year, shows signifi-
cant skill at the lead time of 40, 29, 31, 28, 32, and 30 days during the period from 2009 to 2014 (Figure 12b),
respectively. Note that the errors grow slower in the year 2009 with the stronger ISO and they grow faster in
the year 2014 with the weak ISO, but in either case, the useful skills still are beyond 28 days. Hence, the ana-
lysis of the 20 to 30 day ISO predictability reveals a predictability limit of about 28–40 days, based on the
6 year (2009–2014) independent forecast.

5. Conclusions and Discussion

Global large-scale dynamical components are commonly used for the monitoring of various physical fea-
tures, such as the varying components of global circulations on the time scales of 20 to 30 days, 30 to
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Figure 12. Mean in RMS error is estimated from the firth-order ECAR (a) over the years 2009–2014 and (b) for each year
during the period of 2009–2014. The dashed curve in Figure 12a and thick curve in Figure 12b are the mean error
growth during 2009–2014 and for each year in the firth-order ECAR model, respectively. The thin horizontal line indicates
the standard deviation of the data over the years 2009–2014 in Figure 12a and for each year in Figure 12b, respectively.
Units are mm. The predictability estimated by these ECAR models is presented in number.
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50 days, 50 to 80 days, and so on. Among these oscillations, the intensity of the 20 to 30 day oscillation has a
strongly positive correlation with the heavy rainfall processes over the LYRV in summer. In this study, based
on the temporal lag-lead relationship of these components of global circulations to the low-frequency rainfall
over the LYRV in a complex space, a statistical forecasting model of the time-varying high-order ECARmodels
with the 20 to 30 day oscillations is set up for the extended-range prediction of heavy rainfall process over the
LYRV for 10–30 days in advance. The predictability of the low-frequency rainfall with a suite of ECARmodels is
presented for 20 to 30 day oscillations affecting the heavy rainfall processes over the LYRV, in which the
global low-frequency wind field data, and the daily 20 to 30 day rainfall ISO over the LYRV, are used to build
the forecasting models for the long sequences over a period from 1979 to 2008. A lot of forecast experiments
are carried out for the period from 2009 to 2014. Furthermore, the variations of predictability for these 20 to
30 day oscillations are also analyzed with different intensities of ISO in different years.

Using the principal low-frequency modes of the global 850 hPa meridional winds, which correlated to the
changes of the 20 to 30 day low-frequency wave train in the extratropics of the Southern Hemisphere, a series
of time-varying high-order ECAR forecast models are established in a complex space that could effectively
predict the changes in an extended-range for the 20 to 30 day low-frequency rainfall over the LYRV, for
the period ranging from 2009 to 2014. The results provide significant forecasting signals in regard to when
the extended-range heavy rainfall processes would occur over the LYRV. Based on the time-varying fifth-
order ECAR forecast models, a superior prediction of the growth of the enhancement processes for the
low-frequency components that correspond to the heavy rainfall process with a 25 to 30 day lead is achieved.
The lead time is extended for the 20 to 30 day low-frequency rainfall over the LYRV to about 28 days for this
6 year period (2009 to 2014), and it is also found to be about a 27 day lead time for the forecasts that are
initiated from weak ISO conditions. This suggests that the fifth-order ECAR is able to significantly improve
the prediction of ISO and also displays better stability. Meanwhile, the autocorrelations, PDFs, and noninteger
power spectrums of the forecasts for the low-frequency rainfall with the fifth-order ECAR model are all deter-
mined to be quite consistent with the observations. These results imply that nearly identical statistical and
dynamical features have been described for the 20 to 30 day rainfall oscillations. Furthermore, the analysis
of the 20 to 30 day ISO predictability reveals a predictability limit of about 28–40 days. However, the first-
order AR model, which is directly established by the low-frequency component of the rainfall over LYRV, only
has a lead time of less than 5 days. Therefore, it could be concluded that greater amounts of low-frequency
change information of the generating complex sequence by a Fourier transform could be isolated in a
complex space, compared with that of the original sequence in a real space. These constructed time-varying
high-order ECAR models are found to be more stable when describing the lagged correlations between the
low-frequency components and distinctly improved the real-time forecasting accuracy, along with extending
the lead times. Therefore, the forecasting abilities are determined to be higher than those of the traditional
first-order ARmodel. The forecasting framework that is used in this study can potentially assist in a better rea-
lization of the potential of the real-time forecasts for the 20 to 30 day oscillations related to the heavy rainfall
processes over the LYRV. Also, the increased reliability, as well as improved extended-range rainfall forecasts,
suggests that these time-varying high-order ECAR models could be useful operational forecasting tools. It is
found that an ECARmodeling method based on an extended complex matrix of the low-frequency sequence
specific to the 20 to 30 day ISO also provides a new description for determining the dynamical processes of
the internal interaction in climate systems.

One of the main ways to extend the lead time in an extended-range is by using a climate forecasting method
based on data-driven modeling. Then, by utilizing the high-dimensional data analyses, noise filtering, and
system complexity reduction, the various low-frequency change processes of the global atmosphere, which
are known to affect the heavy rainfall over the LYRV with the time scale of 20–30 days, can be reasonably
identified and extracted from a large number of observations. The big data sets can be converted into small
data sets, which can potentially reveal some of the change laws of a few of the principal low-frequency com-
ponents within a low dimensional space. By using a Fourier transform, the low-frequency principal compo-
nent in the real space can be transformed to the complex space. Based on the extended low-frequency
complex sequence, an ECM is established. Then, the new laws of the complicated lagged correlation changes
between the multiple low-frequency principal components of global circulation and the rainfall over the
LYRV can be determined in the larger extended complex space. This can potentially more effectively
and comprehensively describe the complex change information of the principal components of a climate
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system in a low dimensional space. Therefore, a series of the time-varying high-order ECAR models, with a
higher forecasting ability based on an ECM, can effectively prolong the predictable lead times in the
extended range, which will reflect the interactions between the scientific big data and small data. Differing
from the data-driven modeling strategies for the original sequence in real number domains, such as multile-
vel regression models (Kondrashov et al., 2013; Kravtsov et al., 2005), physics-constrained models (Chen et al.,
2014; Majda & Harlim, 2013), and so on, the high-order ECAR method is developed for generating complex
sequence by a data transformation in this study, including a Fourier transformation, an extended complex
matrix, and the higher orders for the complex number autoregression. It may help provide the essential time
evolution information that can be potentially useful in complex number domains. Furthermore, it is not
necessary to input any predetermined rules in advance, and the method is found to be close to the fore-
casted model with no theoretical support. It is a systematical method and can be applied to any time series,
provided that the ECM could be appropriately selected. Therefore, this method is based on the major lagged
correlations with multiple different laggings hidden in a large number of the observational data in a complex
number space with the time scales of 20–30 days, along with being completely driven by the data. The
method is found to be able to combine together the extended-range theoretical forecasting and the practical
applications in real time, which is an important way to significantly improve the accuracy of the extreme
weather extended-range forecasting.
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