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WE A 1979—2008 SFi2 A Kix F A KEWE 2 a 4= (tropospheric biennial os-
cillation, TBO) #= 43k 50 hPa f& 41 2 .4 & X £ s 24 09 /F 2 a 4 2 ( quasi-biennial oscil-
lation, QBO) M EZ T RIT FTHMEE K A2 a s THEFERAMNGEEY RIS =)
A A (extended complex autoregressive model, ECAR) , st T 12 a(2009—2020 %) #9 Kk
LT R R R A K TBO KI5 &, 7R 269 E o FIRFRIR AL, EREAW, 5T
A2 a BF I RE 69 KT T arAK SR MoK, X AF B TR ] A2 AL 69 TR B 2L 7T 3£ 15 mon A&
ARl a A LR, AALFRITHREGREFIRRET S ETZHTANYT XE
B TRIRAL A 4R T 22 3 B = )2 B2 7 (autoregressive model , AR ) X FF £ ¥ K ) 49 & 1L #9
if X ECAR M 5 ik A T RIZTHBRFARTFTAERALEZHEASE2a s T ERE
A P AW B IR AL AT AL BT R T Ak AR PARIR R AL S AR A TR 69 R A

KA
E2akB;
50 hPa X ¥ ;
A K E,
KT F
ECAR 7 ;
F IR

EMREE, BHERS T ARG RTE, FEKT R E TBO & R B 2L,

DRI I AN 2 R AR A8 A P AR 2 3
Y 2 a B 4R 3% ( quasi-biennial oscillation, QBO) ,
N A2 B A LRI P R T 2Bk BN Z
2 1] WU R JE R I S RS S O Y UE 2 a
A Ak Hi AR A0 AL A ( Reed et al., 1961; Belmont and
Dartt, 1968 ; 2= 22 41 F1 Jp #8 & , 1992 ; Baldwin et al.,
2001 ; PR3CEE,2004) o 7EARZ WF 5T, 38 7 IA A 42
BRAH 2 i 1) KU QBO 5 02 i Uil IR &
Rossby HI Kelvin i iz 35 i AH H A1 1 9K 2l (G i 35
WAHEAEH) o (B A — it 5 £ B QBO {55 If
ANBEFIIX 2 e 56 42 i B, 38 A 8 HC At 28 AU Y
(I J3 ) W9 AT (Baldwin et al.,2001) . 40, X
WZ 2 KX HE 2 a $& 3% (tropospheric biennial os-
cillation, TBO) 43t Y & A= 32 B /2 i -Fili -0 AH HAF
FHEY S5 R Al 532 QBO A7 —EHK R (5
WA e 98 B, 1997; Meehl, 1997; Chang and Li,
2000; Chang et al., 2000; &% 5% #% 4%, 2006 ; Ding,

y ZS

2007 ; 2= 54 B4, 20105 X1 25 2555 ,2013) |, Horpr iy o
RS R SRR B B35, WO P i 4 8 &5 55 19 01
BRALAR B (B KT, 1997) o W 2 B 2= JXUER it 1Y
XA TBO 5 )5 /R Je i -Fd J7 ¥ 3h ( El Nifio-Southern
Oscillation, ENSO) W #E 2 a & ¥ 47 12 Rl A A &
( Yasunari, 1991 ; Shen and Lau, 1995 ; Tomita and Ya-
sunari, 1996 ; Chang et al.,2000) ; %5 4b, & % 17 2 I
I Bl T LA 3t 2 19 QBO 52 i 3] X it J2 (B
FNEAF,2018) , F BUOAR WA 5 2= KGR Y A8 4k (2
SRR, 1992,1997) , k1 v] RE 52 Wi TBO 11
FEH B2 53 3 9F 3% B ( principal oscillation pat-
tern, POP;Hasselmann,1988) /34 & ¥, 7E #fE 2 a I}
] RUBE b, U 2 IR % 8 7 P 18 463 1) XU 2 T 7 i
TRl d g QBO Fi1 SO ( Southern Oscillation ) J2 4 fif1
AR AR AR AE S (Xu, 1992) o B, & F 33
XF i J2 TBO A= i 3l Jy 2 Ll 52 2 2 4%, [A) i) m] g
A Z TR B0 )2 QBO F2 M % i )2 R A A% Y

51 AR A BT, 2025 36 T 9T A K0 I DR TR B A VTR W R K HE 2 2 AR5 AE BRI WE S [ 7] R 24241, 48(6) :976-989.
Yang Q M,2025.Interannual prediction of the quasi-biennial component of rainfall over the lower reaches of Yangtze River valley using an

extended complex autoregressive model[ J].Trans Atmos Sci,48(6) :976-989.DOI; 10. 13878/j.cnki.dqkxxb.20240725001. (in Chinese).
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FRASFIHLER . 3T 30 24k, C AR Z 5L 4R 30
HZFEKAFTER B F 00 2 a FIIR G (B0,
1988 ; BIZE R FI F 7k Ot , 1998 ; 4% Bk W], 2006 5 5K Bt 55
2014) R ) S Ar T 7R E B Pt 2= UK TR i
b IX R K S BUM 3 B9 TBO. 1R %% W 35 19 K/ FR
TLE 2 a JA S A B — 2 AL AH A AT AR 5 K
A R AR 2R G0 40 B0 3, G VLT T 5 e K 4t
B 2 a B4 (AR, 2009) MR R
(intraseasonal oscillation, ISO) 3% 5% | 5] 41 i /=
QBO (i LI 45,1963 ) X #ii K< 30 ~60 d 4 7 1Y
%0 (Zhang and Zhang,2018) , JE A F1] T 58 [ 7K
RARGA AR IER S 1 AT DL BRI, 2
TG A DI (A TR i X)) B R R SR T
At P R EE N Z — TR R i E
AR (8 2R MESE,2018) 3 26 7K 0 2= X DX BF it F
KK TBO 5-°F-jii)2 QBO WA B UJHK & (SR
JePRE , 1992, 1997; BZEINFI F Kk, 1998) . F
TiZ RS QBO {55 Al LA [ T 4% # 21 % it |2
(Baldwin et al., 2003) , 3 5 W % 35 )2 1) K S 1S
fig o PRI 3 S8 AR N ] RUBE 1 3 JE R AU R R
A AR A 5t B v X O 2 RACER U (B AR I
ZE X #3E) 10~ 30 d SiE {151 R A 4l 5 15 ~ 60 d
W2 DL R 2 B AR B A I K P (R IR B 4
2020,2024 ; B /NG 25,2024 5 F 43 ZE4 2024 R4k
55,2024 ) {y — DI AE TR K T o

RERUE 2 a R W LR RE R SR A B AR
FH G2 3Kk 2R S8 A AH BLAE HT OO 2 P32 B
W AH 5 A F 4% (Baldwin et al.,2001) , [] i} 7£ 7F &5 3
AEPR FIAEAC PR 28t G, HE 2 a R R A 2=
) ROBEAR BAE IR S A% o H BT EUE R E X
- JE G QBO AT iy s [l g i 5, % I A
R Al 3K 12 mon £ A5 ( Scaife et al.,2014) , {H KL%
SURBE AR 3 A BE B 1A F I 2 QBO IR i
J2 TBO Z [l iy AH HAEHT, A BE B & e 40 1 H
ftb QBO. F34b, i 4n v W7 =5 14 53 # B4 (Osprey et
al.,2016) [ 1 3L, 2 QBO 1Y LI 7 ok 1 8 iy Pk 4
JIT LA N TR 26 B %) QBO 1 R 1 B #0047 7 22 itk — 20
WF5E e — 7l WF 58 5 ) S B 7 5 A
225 (] J P A3 AR =X T g B 8 A IR A HIOR e ik
QBO FyA LAY %21 ( Barton et al.,2019) , A4 fE& &
WS QBO By FINKS B . 55 —Jr i, Wi T
ARG HA T IO 3 38 5 2 R ] ROBE Y )
Z A A B AE ARG 8 1 (£ %5, 1997) MELLTE
FIR 8 30T 55 52 2R R AE L Fi LA QBO 4 A 4 (A ] 4 1

PR 25 ) 1A 01728 b e 35 R 28 A8 BIL I R T L B —
MIEETE o BEAM , LI 5 4 Ak 20 RN H50(E A 2 2 Bofk
ZEAE T R RN & AR A o B A A TR IR ADE
5% R, N7 TORS B 1Y) BE 9% 4 10 2 4 BR A KT IR
BEIPRZRN FEME 2 a RGEEEH S LERHA
A 3 M 3 ) 2E R AR S R ME TR
U F) Hh A Ak P R R R B R R R 58
%, 4k QBO Al TBO 5 Iif &4 1 2517 1) 4F bR A8 1k
(4 2l 3 0 1R 25 38K, JE R A2 TBO | T 7
FEAR K B ASH 2 M, i LA E 00 E000E 485 =K 09 1 g
T4 B AT SR AS BE TG A2 A1 B A B0 A 75 5K o AR
17,05 20 ZAER R 2T 6 I ER 1) L JRE,
25 7 S 5 RIS s O T B B T B 5 T S
T, 33 2 ELA i B ASCHE A O 1 22 RO I B R, A
T ARG B BT S R B, B A
i HrEoR K e B R I A R R
SEME B Th B 2 ) QBO Rl TBO 72 £k KL A4 9k
A A s AN o R LA ) b A 5 A AR
P QBO 55 4T 4 B L, SE I Q45 B
QBO L5 7% £k il AH B AE FH 4 e A A5 400 0 0 41 o
I, &1 % 48k QBO 1 TBO i 3h i Z ¥E 4, 5 4 i 2
a B[] RUBE i %38 )2 RT3 )22 QBO ) 52 e b IX. (4
KAL R il X)) B 7K TBO A2 4k i) A [] 25 4 1) P[]
PERT, EFEANTE 1 2 a 4R35 B A ey E 40w AEh
PR, g 2 25040 0K 8 1% 17 A P A 80 3 A7 A< A T, 2
AR R E 2 a PR35 40 AR bR BUNDORS B SR AR
Lo IX RN B B S T i T LU U 2
(1 QBO i A5 b {5 K2 BC 3k 4F B $004R0OKG B2, X T 42
&2 QBO EUX 2 TBO 5 i Ml [X. (40 0
ALAH B 2R A VLT Ui b DX ) 45 82 % W L 7 A% 9 A 1
W T AEZE, HTRVEEXNRGERIRGE R
A%, H RGO TR LT Ui IX B K TBO 43 (1) i 47F
FEABIRAR D o A SO K T 51 (1979—2020 4F) 1)
J7 S ek R EUOME 2 a B ) ]ROBE (1 42 Bk 50 hPa ¥f
i QBO KT T Ui H B 7K TBO 434, i F 3 26
W2 QBO FXt i )22 TBO 4 i 22 [] (19 A [ Pp [l 4
A B B 9K B A e i e A2 %k B [l 9 B2 78 (extended
complex autoregressive model, ECAR) (1 £k M,
2014,2016; Yang,2018) , %I 2009—2020 4F K JI. F
Ui 7K TBO 43 i E A7 37 4F b < fige 30 00 3 565, - AF
83X R 2 TBO 0] T4 4

1 H#EMTIE
VLT U I 5% F Bk B VER R R I F il
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X (118.0°~122.5°E,30.5°~32.0°N; ¥ 1a)25 #§F
BIMA , 2 BR% H W% F§ NCEP/NCAR 43 17 %t R}
(NCEP/NCAR Reanalysis 1), /3 #f & f 2.5°x2.5°
(Kalnay et al., 1996) , %¢ LB} 7] & 1979 4F 1 H —
2020 4E 12 H ($: 42 a) . 1 T4 Bk 50 hPa K37 1) 1f
2 a WAk i B 3 (BROCAE,2004) A 3C 32 2Rk ] 4 3K
7 H 50 hPa & [u] I 25 1] K37 73 Bt 42 BR V- Ui J2 & b
QBO RIZEfL, &, AR BB R i 58 K
VLT W A B K D06 e 10 A 1 2 a J] 3912 FE R AE
R, LA S 1 43 7 (real-time singular spectrum
analysis, RSSA) , Bl sz A}t SSA JE 7% ( Yang,2018; 4%
BB ,2021) 45 5 B oK HE 2 a 3 SE R IRV
lekEsK TBO S 5 %) . X F RSSA 1 SZ iy TBO
{5 5 #& Bt iy, /| T-EOF ( temporal empirical
orthogonal functions, it [&] 25 £k 5 25 46 1F 22 pK 4%0) T
T 9 %545 (Lee,2002) , 48 K J7 51 45 siig 4 B2 75 3] 4 41
Fe o), 52 B0 BT UE 2 a 284K Y A 53 3% 23 B (sin-
gular spectrum analysis, SSA) [ T-EOF, 15 3] {i #i
H 73 (Vautard et al.,1992) o JEHCF, AL HIH)
BRI R] ¢, LAY B0 , 28 3 SSA 8k 1 1 A A0V 2
VR P R T SR AT A DR I (ERS TE BCHE 4R
BT 5 e 2 a 4k A0 AH AR IR A0 A5 B, i
BT S AR . RSSA U8B S AT HE 2 a 84k
15 5 4 3T WL I 5 4 Hh 92 QBO B TBO 1 {5
SO BEAL TS B A SO R, Y 0 3 A G
IR AR TR S AT AR . 5 A TEAR O
g rh, SR XA thEE (Chen, 1982) k47 1 35 &
Ko (25 P& IR 7 B R Se R R e ) o |y FE A o)
#r ( principal component analysis, PCA) 5 3] f{) 4> Bk
50 hPa £ [n] Fl 25 i) K37 1 2 a B[] RO A 3 S22 ]
BRI ] 2 %5, I ] RSSA 15 21 % 1 T 45 1] #1248
] W37 45 B s AL S EZE M HE 2 a -G (5 5 1 o i
JEA o B R LI Y VIR i K TBO 43 1 7 471
FA2EK 50 hPa & H 4 [m] M 28 1] X, QBO /)4, 4
YRS A A A (ECAR) (17 8k W, 2014
Yang, 2018 ) F 47k 37 T 3 3, 000 7 3R R K
TBO 73 4P A4k . X A ECAR S fi A5 73 f 81 )
#i 7 (low frequency component forecasting, LFCF)
ALt (KT, 2016) , B 0 B9 28 46 )5 7 3 A0 &2
BAnfeh — A& B R B A B, KITT
T 3t DX [ 7K TBO 3t 1) 2t <7 19 41 128 4 15F [B] J2& 2009
A1 H—2020 4 12 A,

978

2 1979—2020 £ KT T i i X B K
# 2 a #fx3%5 (TBO) B34

XF 1979 4F 1 H—2020 4F 12 H KIT FiEE H %
KT S 5 B0 ) 32485 o T, R A AR B Y
2 a P35 A (/I 25 mon [ R H) , o5 — & 1.3
a ZE AT PR A (I 1b) o BRI 40 43k fE KT
TUWERE KA BRASfE b, E 2 a S (TBO) (5 3= 5
LR KL T R A EERNFZ—0 AT
S MW K YT 9 X A K O 2 a4 R AL
it RSSA i T — A KL Fi#F /K TBO S 45 54,
Bl 2a Jj& 3k F 1979 45 1 H—1998 4 12 H 4 &
SSA 2 HT 2 4> T-EOF, B X [ W 35 A #fE 2 a J&]
WAE 4L, Horh T-EOF1( 54k ) il T-EOF2( [ 4k) (U7
Z TR W 13.1% F1 13.0% . ¥ 1999 4 1 f—
2020 47 12 A K VLR i B K 5 425 8 T-EOF1 #1
T-EOF245 2| {ij 4§ A~ F A4 43 it RC1 (] R, %R ) F
RC2(H Re, 7R ) , 3% 2 AN 43 5 AH A% B VL F i
FEKUE 2 a Jrit R, +R e, , 5 LKL T #FE /K TBO
S 38 B Trpo = Trpo = Rey + Re, (] 2b H1 i €058
£) . BT % T-EOF 46 7 5 4% 5% 15 211 SSA
A AL 7318 ( Yang,2018) L, AE B A Sz Bk 52 i
TBO 43 it B0 f5 B o XA~ TBO 434k Jr 22 5 4F b
k53 (H BEK P 5111 12~ 120 mon JE U7 51) J 2
[ 22. 4% , 2 VT Ve B K A s A8 4 b B 32 22 1 3R
Wz —o B 2c gE— 45 H 1979—2020 £ 6—8 H
KALT W FE K TBO Jp it Lo Rl 6—8 J 7K 4 (748
b, B Z B R O R BUZ 0. 44 (GE L 0. 05 {5 B
BEER R, % T A R g ) , % B3 TBO
oy S EFERKAAAER B E W EA L Y Lo E1H
W E e CERAH) AR T RIC TR L E
Y5 .

l 2b IR T 1999—2020 4F Iy K VLR iiE 5
HBEARAA . RTRL R B, 3T 22 4520 RFB 4 i B Lo
FOHE 2 a R B AR e A8 Ak, (H 9 B R B B 35 1
AN H ) AR W07 R X 1 B 2 K T i
KRR Z, ZAER R ENHERE, BE 2c k&
P, 1999—2003 4E TBO & i 3% 4 U8 55, 2004—2008
HEHEEREIK TBO JLFIH &, 1 2009—2020 4 2 4%
(0 O B R R 2017 AR DOk 3 R B 5
2020 44T 20 4 1 Fcoi , 35 B 20 45 TBO -3
Iy e RAE (4 TR R I R Rt ) .
{HAFE A2 2015—2016 4EF-i )2 QBO My AHH
W (Osprey et al.,2016) I}, {7k TBO i A b % A
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Fig.1 (b) Non-integer spectrum power spectral analysis of monthly precipitation in (a) the lower reaches of the Yangtze River
valley (LYRV) during 1979—2020. The 0. 05 significance level is indicated by the horizontal dashed line
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B2 KL R IX T Bk TBO FFR7EfL: (a) 1979—1998 4F VT T et [X 7 W& /K & T-EOF1 (£ £k ) Fl T-EOF2 (&
2) 5 () 1999—2020 4E VLT il X A B 7K B SEI TBO 734t (Lo s B HHDIR B R KL T i X8 H ek 28 4k s
fii:mm) ; (¢)1979—2020 FEH = 6—8 JT VL F f s X 7k TBO 4 & Al fE /K 5 8 4k (L3RR 6—8 A V- Rk
TBO 34 s HUR R KL T e X 6—8 H Bk bk ; B0z - mm; r Z 7K TBO 434k FI B 7K &k 22 1] F) R 56 &R 40
Fig.2 Interannual variations of monthly precipitation in the LYRV: (a) T-EOF 1 (solid line) and T-EOF 2 ( dashed line) de-

rived from the SSA of monthly precipitation in the LYRV during 1979—1998; (b) the tropospheric quasi-biennial oscil-

lation (TBO) component of rainfall ( the reconstructed component from modes 1 and 2: R., +R.,) during 1999—2020

(I ;the bar chart represents monthly precipitation variations in the LYRV;units; mm); (c) interannual variations of

the TBO component ( solid line) and monthly precipitation ( bar chart) for June—August in the LYRV during 1979—

2020 (units; mm;r denotes the correlation coefficient between the TBO component and monthly precipitation )

Wi, KB 2015 AE B2 W) ,2016 SEEFRKILT
WK 7K TBO 431 TG 55 |, [ /K I BEAT HH B 2 Al

A RO R oK B B IE R i 22, OF H 2017 4E K
FRERA L IE W 2o XA E 2 a RE IR & 19

Wr, 145 1999—2015 ] [ia] fiY B4 B Z2 4K VLT AR A
Z I i 2018—2020 4F 3] 8] i) BUAE B 2= A% 45
ZWEH. XMk R R RS 2015—2016 4F
ik El nifio &4 & it FH — & Bk & (Barton and
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McCormack,2017) , JZ Bt T i 2 QBO 5 ENSO
Z (B () AHELAE X VLR e /K TBO A8 43 52 1
2015—2016 4 (8], 1 BR 114 285 18 i 21 30 3k 38 3t AH B
PR B b Bk A4 5 21 Rossby ¢ ) 2% 18 1% 4% JF
e HE P D0 T U JE IR 2 R T R, I ST P R
B KA o o 38 3 1 3k J2 R0 6 I )2 A B 7R
—E M 4AETF , 0 TBO M A M4 e, 5 80K WK
VML X R TBO B b, B Z 0 P IRER 2 iR
FF- 3 )2 5 %0 3 )2 A BAE A R AL AT AR R,
BN Z A DT

3 KIITHFXEK TBO 5£8F
mE QBO HEX &R
Ba 5T 1979 4£ 1 H—2008 4E 12 A # H
R VLR i s X 20—30 mon fIG AT [ K (10 ) 5 42 K
50 hPa fI A 37 19 AH 3¢ 5% 8 1 4 18] 43 A (B R X 3%
7 A 1] KU {5 R 0. 05 1Y i RGBS ) o 5 BB R
P Fe SRS ME R 52w, 3 S 2 a i E) RUBE A9 K7L

TR R K R 42 3K 45 A% A S0 hPa £ ) XU 28 [m) XU AH
KA BN SA% SARH h BB X A3 A R F
1M 90 mon 2y i EH ER I AR B BB, FLL,
MHHCREOT 0.21 il 745 BN 0.05 /Y %
PERLG . A& 3a W] DL H s 1) Ui 25 A OC DX 3 3
BLAE T BRI S0 Ml DX, 2R B 2 3K 4 R A
o )5 Hb X2 AH 96 19 7 A% 7% 3 ( Antarctic Oscillation
AAO) B AH I 43 A B AL = BR FI BT Hb DR Hh Ry 4
JEE b DX AH 56 8 25 ) 43 A B G XF 07 A g 2 BR e e
245 i Ml DR A 2 Bk Ah b XOR: 5 25 TTER R Y IX
W 3b) . BEAR BRI L IX JE QBO Jy 22 5Tk i
R, (HAR AR 255 (& 3a) , &R W] T o &
i)z 4 1 XU QBO XYL R i B 7K TBO (1) B %5
M A B . Ak, N4k 50 hPa fIGAT £ 1] XU 37 1 AH O
It S ] 43 A B, B 2 BR b i 2 Hb X8 A AE
BRI AL R 1 26 101 P ) 454 (1L 3a) , He rb g ) %o i
1 A A BT T B RE Y v 5 DXOR R K R I VY R
I TT A S R R T 3 R K PG 9 v 26 5 M Xl 2

o= \
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i s
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0° 60°E  120°E 120°W  60°W 0°

90°N
75°N y
60°N . o
45°N Py o7
30°NK
15°N
M 0°
15°S
30°S
45°S
60°S
75°S
90°S

0° 60°E  120°E  180° 120°W  60°W 0°
E23:
Bl 3 1979—2008 4 JC YT T i i IX H B /K ofiE 2 a fIR$5 70 it A2 Bk 50 hPa {450 KU A AR OC 23 A (a) Rl 42 Bk 50 hPa Sl (b) FZ
1] () SR F- 8 3 77 471 (i ) RUBE S 20~ 30 mon ) 5 J5UIR e 51 4F B A2 A b vl 22 LA AR 25 1] 3415 (a0 o B B2 DX O 7R 26
I R i 0.05 15 B2 AY 2 & PR A 35 5 b A ¢ P BE X 100, Hivp =50 Y IXEUTT B2 IX 301 )
Fig.3 Correlation between monthly precipitation over the LYRV and global wind anomalies at 50 hPa: (a) the 20—30-month

time scale during 1979—2008, where areas with 95% significance for zonal wind are shaded; spatial distributions of the

ratio of variance for the 20—30-month signal to total interannual variability for (b) zonal and (c¢) meridional wind anom-

alies ( values are multiplied by 100; areas with values=50 are shaded)
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T 25 SURRECR M X8 (18] 3e) o X R WP JZ AAO
AL =2k b 4 R Hb X2 1 KU QBO 43 1 RS
Bkrp i 26 E 2 ) KU QBO 43 19 I 47 6 VLT U
X 7K TBO 520 i 2 K T #oa 7 i J2 4 ) XL QBO
5% ) o

HE—25 %F 1979—2008 4F 1 [i1] f#) 20 ~ 30 mon i
] RUBE 1 4Bk 50 hPa G451 26 1] X\ #£ 17 PCA, 15 5|
5 A~ F2 BAIRAR £ ) RS () 45E 25 (B Butterworth 8 I
152435k 50 hPa #: 2 a KA 2 1] W37 ) , HLff B 5 22
Ay 32.0% 17.1% . 12.4% .9.5% 1 7.8% . |
WS A XN E) F S PC R 250 5 KILT
e H DX R K 2 a4 I R 56 R B S - 0. 11
0.63.-0.48 —0.12 1 0.49, Hrp 542 3 .5 ik
Xt R 3 4~ PC 2Z ] AH G i T 0. 05 5 1 2 2 1
IR, AH 56 5 ok B 3 R 2 B (A SE R B
9 0.63, 58 1k 0.02 {5 B0y o 2 KPR S ) . o)
Sh, F PCA 133 RT 5 A~ 32 BARA 28 i) R 5 ] 45 25 1Y)
f B 7 22 4% W 19.9% . 16.3% . 12.5% . 9. 9% FlI
6. 8% , EATTX LI F B4 PC 5 K VLR Jif il IX K
72 a gp 5 MY AH OC R B Al 02 0.27.-0.32.0.79,
—0. 15§11 0. 34, Hirp 545 1.2 .3 .5 AXT R0 4 4
PC Z MM JGH 1 7 0. 05 15 2 i1 W 35 M 7K P 46 5
Forp 5 3 RS AH G B KL AHOC REUZ 0.79, 3@ ok T
0.01 {5 By MR 0, RIG, 28 2.3.5 £ 1)
RS AES 1.2.3.5 L) KBS I 5 K VTR i f K
QBO 73w % PIAH 1 7 4~ 50 hPa ¥R QBO #Y, it
Hh T WS K e 3 BEAIROR AS I B TR AR E M X
1979—2006 4E il 1979—2004 4E & H 4Bk 50 hPa %
AR AT X3 43 03] 3547 PCA 13 IR 5 A4S 28 MBS .
FAASTRVBE A K BE A5 21 00 465 AiF 10 4 (25 1) 40 A5 ) 1) )
Je A TR LAXHE | R 1, 43 BT 25 6] 43 A7 B0 ) B[] A2
PE (BB, 1993 ) (PCA v Jz [ (19 ¢ AiE ) 5t X o, F
P9 M R I ) R 8, %R T R = -1, e R
A AL P B S, T REAR R T F — W B R AN
[v) By B ml AN (] 5 1), 2 ) — SRR AIE 1 i, LG T R,
118 246 Xof {32 Sk 9 A RP ALK 1) o AH DL B A B L) o &
WFEW EMTSLLLE 1979—2008 4 (30 a) £ 2 (1 A
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Fig.5

(a) Correlation coefficients between observed and forecasted values ( 1—30-month lead time) and (b) root-mean-square

error (RMSE) for the TBO component of monthly precipitation over the LYRV during 2009—2020.Solid line: ECAR

model; dashed line; AR model. The horizontal solid line indicates the 95% significance level in (a) and one standard de-

viation in (b)
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+- ARTICLE -

Interannual prediction of the quasi-biennial component of rainfall over the
lower reaches of Yangtze River valley using an extended complex autore-
gressive model

YANG Qiuming

Nanjing Joint Institute for Atmospheric Sciences,Nanjing 210041, China

Abstract The tropospheric quasi-biennial oscillation (TBO) is a mode of climate variability with a period of
approximately 2—3 years, primarily observed in tropical, subtropical, and mid- to high-latitude regions of Eura-
sia and the Southern Hemisphere. It manifests as quasi-periodic variations in atmospheric circulation, precipitati-
on, sea surface temperature (SST), and snow cover. In China, a prominent quasi-2-year is evident in summer
precipitation, particularly over the lower reaches of the Yangtze River Valley (LYRV ), which lies within the
East Asian subtropical monsoon region and exhibits pronounced TBO characteristics. Although the TBO is closely
associated with large-scale climate modes such as the El Nifio-Southern Oscillation ( ENSO), its core driving
mechanisms involve tropospheric dynamics, ocean-atmosphere interactions, and connections with stratospheric
circulation. The TBO represents a critical timescale bridging annual cycles and interannual variability (e.g., EN-
SO). Understanding its evolution is essential for extending seasonal-to-interannual climate prediction lead times
(‘approximately 6—18 months). The TBO is also closely linked to the variability of intraseasonal oscillations
(ISO) and to extreme climate events such as monsoon precipitation anomalies, droughts, and heatwaves,
thereby providing valuable guidance for agricultural planning, water resource management, and disaster mitiga-
tion.

This study develops a data-driven prediction model for interannual variations in the TBO component of rain-
fall. The quasi-2-year components (TBO) of monthly precipitation in the LYRV and the principal components
('quasi-biennial oscillation, QBO) of the 50 hPa stratospheric zonal and meridional winds for 1979—1998 were

used to construct a time-varying Extended Complex Autoregressive ( ECAR) model for predicting the QBO-relat-
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ed component of rainfall in the LYRV. An independent 12-year real-time interannual prediction experiment
(1999—2020) was conducted on the quasi-biennial component of monthly precipitation over the LYRV. The re-
sults demonstrate that the ECAR model exhibits high predictive skill, maintaining strong forecast accuracy up to a
15-month lead time—significantly outperforming the conventional autoregressive ( AR) model. These forecasts
provide valuable predictive guidance for anticipating summer flood processes in the LYRV more than a year in
advance.

The proposed data-driven prediction method employs real-time singular spectrum analysis (RSSA) to extract
the TBO components from the troposphere and QBO components from the stratosphere, both characterized by
strong autocorrelation. Through Fourier transformation, these primary quasi-2-year components are converted into
complex low-frequency signals in the frequency space, forming an extended complex matrix that captures evol-
ving relationships among atmospheric variables. This new set of variables to better jointly shape a new pattern of
variable changes. From the perspective of multivariate synergy, collaborative patterns that are difficult to be iden-
tified by traditional methods can be uncovered.A simplified, time-varying ECAR model is then derived to repre-
sent the dynamic interactions among these components. The inverse Fourier transform yields the predicted vectors
in the original space. This framework effectively reduces data diversity, simplifies complex relationships, and a-
dapts to interdecadal changes in coupling among low-frequency processes, thereby enhancing forecast skill and
extending prediction lead times. Unlike traditional physics-based numerical models or AI ( artificial intelligence )
systems constrained by initial conditions and model complexity, this data-knowledge-simplification approach pro-
vides a robust alternative for interannual climate prediction. It captures real-time global QBO signals and the syn-
ergistic effects of tropical and extratropical stratospheric QBOs on tropospheric TBO-related precipitation over the
lower Yangtze River region, substantially improving interannual predictability of the TBO. When combined with
interdecadal trends and sub-seasonal precipitation variability, this approach enhances the predictive capability for

summer rainstorms and flood events across the LYRV.

Keywords quasi-biennial oscillation ( QBO); 50 hPa wind; monthly precipitation; lower Yangtze River

Valley ; extended complex autoregressive model (ECAR) ; interannual prediction
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